juicebox_asm/asm.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
//! The `x64` jit assembler.
use crate::imm::Imm;
use crate::mem::{AddrMode, Mem, Mem16, Mem32, Mem64, Mem8};
use crate::reg::{Reg, Reg16, Reg32, Reg64, Reg8};
use crate::Label;
/// Encode the `REX` byte.
const fn rex(w: bool, r: u8, x: u8, b: u8) -> u8 {
let w = if w { 1 } else { 0 };
let r = (r >> 3) & 1;
let x = (x >> 3) & 1;
let b = (b >> 3) & 1;
0b0100_0000 | ((w & 1) << 3) | (r << 2) | (x << 1) | b
}
/// Encode the `ModR/M` byte.
const fn modrm(mod_: u8, reg: u8, rm: u8) -> u8 {
((mod_ & 0b11) << 6) | ((reg & 0b111) << 3) | (rm & 0b111)
}
/// Encode the `SIB` byte.
const fn sib(scale: u8, index: u8, base: u8) -> u8 {
((scale & 0b11) << 6) | ((index & 0b111) << 3) | (base & 0b111)
}
/// `x64` jit assembler.
pub struct Asm {
buf: Vec<u8>,
}
impl Asm {
/// Create a new `x64` jit assembler.
pub fn new() -> Asm {
// Some random default capacity.
let buf = Vec::with_capacity(1024);
Asm { buf }
}
/// Consume the assembler and get the emitted code.
pub fn into_code(self) -> Vec<u8> {
self.buf
}
/// Disassemble the code currently added to the runtime, using
/// [`ndisasm`](https://nasm.us/index.php) and print it to _stdout_. If
/// `ndisasm` is not available on the system this prints a warning and
/// becomes a nop.
///
/// # Panics
///
/// Panics if anything goes wrong with spawning, writing to or reading from
/// the `ndisasm` child process.
pub fn disasm(&self) {
crate::disasm::disasm(&self.buf);
}
/// Emit a slice of bytes.
pub(crate) fn emit(&mut self, bytes: &[u8]) {
self.buf.extend_from_slice(bytes);
}
/// Emit a slice of optional bytes.
fn emit_optional(&mut self, bytes: &[Option<u8>]) {
for byte in bytes.iter().filter_map(|&b| b) {
self.buf.push(byte);
}
}
/// Emit a slice of bytes at `pos`.
///
/// # Panics
///
/// Panics if [pos..pos+len] indexes out of bound of the underlying code buffer.
fn emit_at(&mut self, pos: usize, bytes: &[u8]) {
if let Some(buf) = self.buf.get_mut(pos..pos + bytes.len()) {
buf.copy_from_slice(bytes);
} else {
unimplemented!();
}
}
/// Bind the [Label] to the current location.
pub fn bind(&mut self, label: &mut Label) {
// Bind the label to the current offset.
label.bind(self.buf.len());
// Resolve any pending relocations for the label.
self.resolve(label);
}
/// If the [Label] is bound, patch any pending relocation.
fn resolve(&mut self, label: &mut Label) {
if let Some(loc) = label.location() {
// For now we only support disp32 as label location.
let loc = i32::try_from(loc).expect("Label location did not fit into i32.");
// Resolve any pending relocations for the label.
for off in label.offsets_mut().drain() {
// Displacement is relative to the next instruction following the jump.
// We record the offset to patch at the first byte of the disp32 therefore we need
// to account for that in the disp computation.
let disp32 = loc - i32::try_from(off).expect("Label offset did not fit into i32") - 4 /* account for the disp32 */;
// Patch the relocation with the disp32.
self.emit_at(off, &disp32.to_ne_bytes());
}
}
}
// -- Encode utilities.
/// Encode an register-register instruction.
pub(crate) fn encode_rr<T: Reg>(&mut self, opc: &[u8], op1: T, op2: T)
where
Self: EncodeRR<T>,
{
// MR operand encoding.
// op1 -> modrm.rm
// op2 -> modrm.reg
let modrm = modrm(
0b11, /* mod */
op2.idx(), /* reg */
op1.idx(), /* rm */
);
let prefix = <Self as EncodeRR<T>>::legacy_prefix();
let rex = <Self as EncodeRR<T>>::rex(op1, op2);
self.emit_optional(&[prefix, rex]);
self.emit(opc);
self.emit(&[modrm]);
}
/// Encode an offset-immediate instruction.
/// Register idx is encoded in the opcode.
pub(crate) fn encode_oi<T: Reg, U: Imm>(&mut self, opc: u8, op1: T, op2: U)
where
Self: EncodeR<T>,
{
let opc = opc + (op1.idx() & 0b111);
let prefix = <Self as EncodeR<T>>::legacy_prefix();
let rex = <Self as EncodeR<T>>::rex(op1);
self.emit_optional(&[prefix, rex]);
self.emit(&[opc]);
self.emit(op2.bytes());
}
/// Encode a register instruction.
pub(crate) fn encode_r<T: Reg>(&mut self, opc: u8, opc_ext: u8, op1: T)
where
Self: EncodeR<T>,
{
// M operand encoding.
// op1 -> modrm.rm
// opc extension -> modrm.reg
let modrm = modrm(
0b11, /* mod */
opc_ext, /* reg */
op1.idx(), /* rm */
);
let prefix = <Self as EncodeR<T>>::legacy_prefix();
let rex = <Self as EncodeR<T>>::rex(op1);
self.emit_optional(&[prefix, rex]);
self.emit(&[opc, modrm]);
}
/// Encode a memory operand instruction.
pub(crate) fn encode_m<T: Mem>(&mut self, opc: u8, opc_ext: u8, op1: T)
where
Self: EncodeM<T>,
{
// M operand encoding.
// op1 -> modrm.rm
let (mode, rm) = match op1.mode() {
AddrMode::Indirect => {
assert!(!op1.base().need_sib() && !op1.base().is_pc_rel());
(0b00, op1.base().idx())
}
AddrMode::IndirectDisp => {
assert!(!op1.base().need_sib());
(0b10, op1.base().idx())
}
AddrMode::IndirectBaseIndex => {
assert!(!op1.base().is_pc_rel());
// Using rsp as index register is interpreted as just base w/o offset.
// https://wiki.osdev.org/X86-64_Instruction_Encoding#32.2F64-bit_addressing_2
// Disallow this case, as guard for the user.
assert!(!matches!(op1.index(), Reg64::rsp));
(0b00, 0b100)
}
};
let modrm = modrm(
mode, /* mode */
opc_ext, /* reg */
rm, /* rm */
);
let prefix = <Self as EncodeM<T>>::legacy_prefix();
let rex = <Self as EncodeM<T>>::rex(&op1);
self.emit_optional(&[prefix, rex]);
self.emit(&[opc, modrm]);
match op1.mode() {
AddrMode::Indirect => {}
AddrMode::IndirectDisp => self.emit(&op1.disp().to_ne_bytes()),
AddrMode::IndirectBaseIndex => {
self.emit(&[sib(0, op1.index().idx(), op1.base().idx())])
}
}
}
/// Encode a memory-immediate instruction.
pub(crate) fn encode_mi<M: Mem, T: Imm>(&mut self, opc: u8, opc_ext: u8, op1: M, op2: T)
where
Self: EncodeM<M>,
{
// MI operand encoding.
// op1 -> modrm.rm
// op2 -> imm
let (mode, rm) = match op1.mode() {
AddrMode::Indirect => {
assert!(!op1.base().need_sib() && !op1.base().is_pc_rel());
(0b00, op1.base().idx())
}
AddrMode::IndirectDisp => {
assert!(!op1.base().need_sib());
(0b10, op1.base().idx())
}
AddrMode::IndirectBaseIndex => {
assert!(!op1.base().is_pc_rel());
// Using rsp as index register is interpreted as just base w/o offset.
// https://wiki.osdev.org/X86-64_Instruction_Encoding#32.2F64-bit_addressing_2
// Disallow this case, as guard for the user.
assert!(!matches!(op1.index(), Reg64::rsp));
(0b00, 0b100)
}
};
let modrm = modrm(
mode, /* mode */
opc_ext, /* reg */
rm, /* rm */
);
let prefix = <Self as EncodeM<M>>::legacy_prefix();
let rex = <Self as EncodeM<M>>::rex(&op1);
self.emit_optional(&[prefix, rex]);
self.emit(&[opc, modrm]);
match op1.mode() {
AddrMode::Indirect => {}
AddrMode::IndirectDisp => self.emit(&op1.disp().to_ne_bytes()),
AddrMode::IndirectBaseIndex => {
self.emit(&[sib(0, op1.index().idx(), op1.base().idx())])
}
}
self.emit(op2.bytes());
}
/// Encode a memory-register instruction.
pub(crate) fn encode_mr<M: Mem, T: Reg>(&mut self, opc: u8, op1: M, op2: T)
where
Self: EncodeMR<M>,
{
// MR operand encoding.
// op1 -> modrm.rm
// op2 -> modrm.reg
let (mode, rm) = match op1.mode() {
AddrMode::Indirect => {
assert!(!op1.base().need_sib() && !op1.base().is_pc_rel());
(0b00, op1.base().idx())
}
AddrMode::IndirectDisp => {
assert!(!op1.base().need_sib());
(0b10, op1.base().idx())
}
AddrMode::IndirectBaseIndex => {
assert!(!op1.base().is_pc_rel());
// Using rsp as index register is interpreted as just base w/o offset.
// https://wiki.osdev.org/X86-64_Instruction_Encoding#32.2F64-bit_addressing_2
// Disallow this case, as guard for the user.
assert!(!matches!(op1.index(), Reg64::rsp));
(0b00, 0b100)
}
};
let modrm = modrm(
mode, /* mode */
op2.idx(), /* reg */
rm, /* rm */
);
let prefix = <Self as EncodeMR<M>>::legacy_prefix();
let rex = <Self as EncodeMR<M>>::rex(&op1, op2);
self.emit_optional(&[prefix, rex]);
self.emit(&[opc, modrm]);
match op1.mode() {
AddrMode::Indirect => {}
AddrMode::IndirectDisp => self.emit(&op1.disp().to_ne_bytes()),
AddrMode::IndirectBaseIndex => {
self.emit(&[sib(0, op1.index().idx(), op1.base().idx())])
}
}
}
/// Encode a register-memory instruction.
pub(crate) fn encode_rm<T: Reg, M: Mem>(&mut self, opc: u8, op1: T, op2: M)
where
Self: EncodeMR<M>,
{
// RM operand encoding.
// op1 -> modrm.reg
// op2 -> modrm.rm
self.encode_mr(opc, op2, op1);
}
/// Encode a jump to label instruction.
pub(crate) fn encode_jmp_label(&mut self, opc: &[u8], op1: &mut Label) {
// Emit the opcode.
self.emit(opc);
// Record relocation offset starting at the first byte of the disp32.
op1.record_offset(self.buf.len());
// Emit a zeroed disp32, which serves as placeholder for the relocation.
// We currently only support disp32 jump targets.
self.emit(&[0u8; 4]);
// Resolve any pending relocations for the label.
self.resolve(op1);
}
}
// -- Encoder helper.
/// Encode helper for register-register instructions.
pub(crate) trait EncodeRR<T: Reg> {
fn legacy_prefix() -> Option<u8> {
None
}
fn rex(op1: T, op2: T) -> Option<u8> {
if op1.need_rex() || op2.need_rex() {
Some(rex(op1.rexw(), op2.idx(), 0, op1.idx()))
} else {
None
}
}
}
impl EncodeRR<Reg8> for Asm {}
impl EncodeRR<Reg32> for Asm {}
impl EncodeRR<Reg16> for Asm {
fn legacy_prefix() -> Option<u8> {
Some(0x66)
}
}
impl EncodeRR<Reg64> for Asm {}
/// Encode helper for register instructions.
pub(crate) trait EncodeR<T: Reg> {
fn legacy_prefix() -> Option<u8> {
None
}
fn rex(op1: T) -> Option<u8> {
if op1.need_rex() {
Some(rex(op1.rexw(), 0, 0, op1.idx()))
} else {
None
}
}
}
impl EncodeR<Reg8> for Asm {}
impl EncodeR<Reg32> for Asm {}
impl EncodeR<Reg16> for Asm {
fn legacy_prefix() -> Option<u8> {
Some(0x66)
}
}
impl EncodeR<Reg64> for Asm {}
/// Encode helper for memory-register instructions.
pub(crate) trait EncodeMR<M: Mem> {
fn legacy_prefix() -> Option<u8> {
None
}
fn rex<T: Reg>(op1: &M, op2: T) -> Option<u8> {
if M::is_64() || op2.is_ext() || op1.base().is_ext() || op1.index().is_ext() {
Some(rex(
M::is_64(),
op2.idx(),
op1.index().idx(),
op1.base().idx(),
))
} else {
None
}
}
}
impl EncodeMR<Mem8> for Asm {}
impl EncodeMR<Mem16> for Asm {
fn legacy_prefix() -> Option<u8> {
Some(0x66)
}
}
impl EncodeMR<Mem32> for Asm {}
impl EncodeMR<Mem64> for Asm {}
/// Encode helper for memory perand instructions.
pub(crate) trait EncodeM<M: Mem> {
fn legacy_prefix() -> Option<u8> {
None
}
fn rex(op1: &M) -> Option<u8> {
if M::is_64() || op1.base().is_ext() || op1.index().is_ext() {
Some(rex(M::is_64(), 0, op1.index().idx(), op1.base().idx()))
} else {
None
}
}
}
impl EncodeM<Mem8> for Asm {}
impl EncodeM<Mem16> for Asm {
fn legacy_prefix() -> Option<u8> {
Some(0x66)
}
}
impl EncodeM<Mem32> for Asm {}
impl EncodeM<Mem64> for Asm {}