juicebox_asm/
rt.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
//! Simple `mmap`ed runtime.
//!
//! This runtime supports adding code to executable pages and turn the added code into user
//! specified function pointer.

#[cfg(not(target_os = "linux"))]
compile_error!("This runtime is only supported on linux");

mod perf {
    use std::fs;
    use std::io::Write;

    /// Provide support for the simple [perf jit interface][perf-jit].
    ///
    /// This allows a simple (static) jit runtime to generate meta data describing the generated
    /// functions, which is used during post-processing by `perf report` to symbolize addresses
    /// captured while executing jitted code.
    ///
    /// By the nature of this format, this can not be used for dynamic jit runtimes, which reuses
    /// memory which previously contained jitted code.
    ///
    /// [perf-jit]: https://elixir.bootlin.com/linux/v6.6.6/source/tools/perf/Documentation/jit-interface.txt
    pub(super) struct PerfMap {
        file: std::fs::File,
    }

    impl PerfMap {
        /// Create an empty perf map file.
        pub(super) fn new() -> Self {
            let name = format!("/tmp/perf-{}.map", unsafe { libc::getpid() });
            let file = fs::OpenOptions::new()
                .truncate(true)
                .create(true)
                .write(true)
                .open(&name)
                .unwrap_or_else(|_| panic!("Failed to open perf map file {}", &name));

            PerfMap { file }
        }

        /// Add an entry to the perf map file.
        pub(super) fn add_entry(&mut self, start: usize, len: usize) {
            // Each line has the following format, fields separated with spaces:
            //   START SIZE NAME
            //
            // START and SIZE are hex numbers without 0x.
            // NAME is the rest of the line, so it could contain special characters.
            writeln!(self.file, "{:x} {:x} jitfn_{:x}", start, len, start)
                .expect("Failed to write PerfMap entry");
        }
    }
}

/// A simple `mmap`ed runtime with executable pages.
pub struct Runtime {
    buf: *mut u8,
    len: usize,
    idx: usize,
    perf: Option<perf::PerfMap>,
}

impl Runtime {
    /// Create a new [Runtime].
    ///
    /// # Panics
    ///
    /// Panics if the `mmap` call fails.
    pub fn new() -> Runtime {
        // Allocate a single page.
        let len = 4096;
        let buf = unsafe {
            libc::mmap(
                std::ptr::null_mut(),
                len,
                libc::PROT_NONE,
                libc::MAP_PRIVATE | libc::MAP_ANONYMOUS,
                0, /* fd */
                0, /* off */
            ) as *mut u8
        };
        assert_ne!(
            buf.cast(),
            libc::MAP_FAILED,
            "Failed to mmap runtime code page"
        );

        Runtime {
            buf,
            len,
            idx: 0,
            perf: None,
        }
    }

    /// Create a new [Runtime] which also generates static perf metat data.
    ///
    /// For each function added to the [Runtime], an entry will be generated in the
    /// `/tmp/perf-<PID>.map` file, which `perf report` uses to symbolicate unknown addresses.
    /// This is applicable for static runtimes only.
    ///
    /// # Panics
    ///
    /// Panics if the `mmap` call fails.
    pub fn with_profile() -> Runtime {
        let mut rt = Runtime::new();
        rt.perf = Some(perf::PerfMap::new());
        rt
    }

    /// Add the block of `code` to the runtime and a get function pointer of type `F`.
    ///
    /// # Panics
    ///
    /// Panics if the `code` does not fit on the `mmap`ed pages or is empty.
    ///
    /// # Safety
    ///
    /// The code added must fulfill the ABI of the specified function `F` and the returned function
    /// pointer is only valid until the [`Runtime`] is dropped.
    ///
    /// # Examples
    ///
    /// ```
    /// let mut rt = juicebox_asm::Runtime::new();
    ///
    /// let code = [ 0x90 /* nop */, 0xc3 /* ret */ ];
    /// let nop = unsafe { rt.add_code::<extern "C" fn()>(&code) };
    ///
    /// nop();
    /// ```
    pub unsafe fn add_code<F>(&mut self, code: impl AsRef<[u8]>) -> F {
        // Get pointer to start of next free byte.
        assert!(self.idx < self.len, "Runtime code page full");
        let fn_start = self.buf.add(self.idx);

        // Copy over code.
        let code = code.as_ref();
        assert!(!code.is_empty(), "Adding empty code not supported");
        assert!(
            code.len() <= (self.len - self.idx),
            "Code does not fit on the runtime code page"
        );
        self.unprotect();
        unsafe { std::ptr::copy_nonoverlapping(code.as_ptr(), fn_start, code.len()) };
        self.protect();

        // Increment index to next free byte.
        self.idx += code.len();

        // Add perf map entry.
        if let Some(map) = &mut self.perf {
            map.add_entry(fn_start as usize, code.len());
        }

        // Return function to newly added code.
        unsafe { Self::as_fn::<F>(fn_start) }
    }

    /// Disassemble the code currently added to the runtime, using
    /// [`ndisasm`](https://nasm.us/index.php) and print it to _stdout_. If
    /// `ndisasm` is not available on the system this prints a warning and
    /// becomes a nop.
    ///
    /// # Panics
    ///
    /// Panics if anything goes wrong with spawning, writing to or reading from
    /// the `ndisasm` child process.
    pub fn disasm(&self) {
        assert!(self.idx <= self.len);
        crate::disasm::disasm(unsafe { core::slice::from_raw_parts(self.buf, self.idx) });
    }

    /// Reinterpret the block of code pointed to by `fn_start` as `F`.
    #[inline]
    unsafe fn as_fn<F>(fn_start: *mut u8) -> F {
        unsafe { std::mem::transmute_copy(&fn_start) }
    }

    /// Add write protection the underlying code page(s).
    ///
    /// # Panics
    ///
    /// Panics if the `mprotect` call fails.
    fn protect(&mut self) {
        unsafe {
            // Remove write permissions from code page and allow to read-execute from it.
            let ret = libc::mprotect(self.buf.cast(), self.len, libc::PROT_READ | libc::PROT_EXEC);
            assert_eq!(ret, 0, "Failed to RX mprotect runtime code page");
        }
    }

    /// Remove write protection the underlying code page(s).
    ///
    /// # Panics
    ///
    /// Panics if the `mprotect` call fails.
    fn unprotect(&mut self) {
        unsafe {
            // Add write permissions to code page.
            let ret = libc::mprotect(self.buf.cast(), self.len, libc::PROT_WRITE);
            assert_eq!(ret, 0, "Failed to W mprotect runtime code page");
        }
    }
}

impl Drop for Runtime {
    /// Unmaps the code page. This invalidates all the function pointer returned by
    /// [`Runtime::add_code`].
    fn drop(&mut self) {
        unsafe {
            let ret = libc::munmap(self.buf.cast(), self.len);
            assert_eq!(ret, 0, "Failed to munmap runtime");
        }
    }
}

#[cfg(test)]
mod test {
    use super::*;

    #[test]
    fn test_code_max_size() {
        let mut rt = Runtime::new();
        let code = [0u8; 4096];
        unsafe {
            rt.add_code::<extern "C" fn()>(code);
        }
    }

    #[test]
    #[should_panic]
    fn test_code_max_size_plus_1() {
        let mut rt = Runtime::new();
        let code = [0u8; 4097];
        unsafe {
            rt.add_code::<extern "C" fn()>(code);
        }
    }

    #[test]
    #[should_panic]
    fn test_code_max_size_plus_1_2() {
        let mut rt = Runtime::new();
        let code = [0u8; 4096];
        unsafe {
            rt.add_code::<extern "C" fn()>(code);
        }

        let code = [0u8; 1];
        unsafe {
            rt.add_code::<extern "C" fn()>(code);
        }
    }

    #[test]
    #[should_panic]
    fn test_empty_code() {
        let mut rt = Runtime::new();
        let code = [0u8; 0];
        unsafe {
            rt.add_code::<extern "C" fn()>(code);
        }
    }
}