1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
//! TinyVm example.
//!
//! This example introduces a simple 16 bit virtual machine the [`TinyVm`]. The VM consists of
//! three registers defined in [`TinyReg`], a separate _data_ and _instruction_ memory and a small
//! set of instructions [`TinyInsn`], sufficient to implement a guest program to compute the
//! Fibonacci sequence.
//!
//! The `TinyVm` implements a simple _just-in-time (JIT)_ compiler to demonstrate the
//! [`juicebox_asm`] crate. Additionally, it implements a reference _interpreter_.
//!
//! ```
//! fn main() {
//! let mut prog = Vec::new();
//! prog.push(TinyInsn::LoadImm(TinyReg::A, 100));
//! prog.push(TinyInsn::Add(TinyReg::B, TinyReg::A));
//! prog.push(TinyInsn::Addi(TinyReg::C, 100));
//! prog.push(TinyInsn::Halt);
//!
//! let mut vm = TinyVm::new(prog);
//! vm.interp();
//!
//! assert_eq!(100, vm.read_reg(TinyReg::A));
//! assert_eq!(100, vm.read_reg(TinyReg::B));
//! assert_eq!(100, vm.read_reg(TinyReg::C));
//! assert_eq!(4, vm.icnt);
//! assert_eq!(4, vm.pc);
//!
//! vm.pc = 0;
//! vm.jit();
//!
//! assert_eq!(100, vm.read_reg(TinyReg::A));
//! assert_eq!(200, vm.read_reg(TinyReg::B));
//! assert_eq!(200, vm.read_reg(TinyReg::C));
//! assert_eq!(8, vm.icnt);
//! assert_eq!(4, vm.pc);
//! }
//! ```
use juicebox_asm::insn::*;
use juicebox_asm::Runtime;
use juicebox_asm::{Asm, Imm16, Imm64, MemOp, Reg16, Reg64};
/// A guest physical address.
pub struct PhysAddr(pub u16);
impl Into<usize> for PhysAddr {
fn into(self) -> usize {
self.0 as usize
}
}
/// The registers for the [`TinyVm`].
#[derive(Debug, PartialEq, Clone, Copy)]
pub enum TinyReg {
A,
B,
C,
}
impl TinyReg {
#[inline]
fn idx(&self) -> usize {
*self as usize
}
}
/// The instructions for the [`TinyVm`].
#[derive(Debug, PartialEq, Clone, Copy)]
pub enum TinyInsn {
/// Halt the VM.
Halt,
/// Load the immediate value into the register `reg = imm`.
LoadImm(TinyReg, u16),
/// Load a value from the memory (absolute addressing) into the register `reg = mem[imm]`.
Load(TinyReg, u16),
/// Store a value from the register into the memory (absolute addressing) `mem[imm] = reg`.
Store(TinyReg, u16),
/// Add the register to the register `reg1 += reg2`.
Add(TinyReg, TinyReg),
/// Add the immediate to the register `reg += imm`.
Addi(TinyReg, i16),
/// Jump unconditional (absolute addressing) `pc = disp`.
Branch(usize),
/// Jump if the register is zero (absolute addressing) `pc = (reg == 0) ? disp : pc++`.
BranchZero(TinyReg, usize),
}
/// Value returned from a [`JitFn`].
#[repr(C)]
struct JitRet(u64, u64);
/// Function signature defining the simple JIT ABI used in this example.
/// A `JitFn` represents the entry point to a jit compiled _basic block_ of the guest software.
///
/// ```text
/// JIT entry:
/// arg0: pointer to guest registers
/// arg1: pointer to guest data memory
///
/// JIT exit:
/// JitRet(0, N): Halt instruction, executed N instructions.
/// JitRet(N, R): N!=0
/// End of basic block, executed N instructions,
/// must re-enter at `pc = R`.
/// ```
type JitFn = extern "C" fn(*mut u16, *mut u8) -> JitRet;
/// The `TinyVm` virtual machine state.
pub struct TinyVm {
/// Data memory, covering full 16 bit guest address space.
///
/// For simplicity add additional trailing 1 byte to support an unaligned access to 0xffff
/// without any special handling.
dmem: [u8; 0x1_0000 + 1],
/// Instruction memory.
imem: Vec<TinyInsn>,
/// VM registers.
regs: [u16; 3],
/// VM program counter.
pc: usize,
/// VM executed instruction counter (perf counter).
icnt: usize,
// -- JIT state.
/// Mapping of guest PCs to jitted host code (`JitFn`). This mapping is filled when guest
/// _basic blocks_ are jitted.
jit_cache: Vec<Option<JitFn>>,
/// JIT runtime maintaining the host pages containing the jitted guest code.
rt: Runtime,
}
impl TinyVm {
/// Create a new [`TinyVm`] and initialize the instruction memory from `code`.
pub fn new(code: Vec<TinyInsn>) -> Self {
let mut jit_cache = Vec::with_capacity(code.len());
jit_cache.resize(code.len(), None);
TinyVm {
dmem: [0; 0x1_0000 + 1],
imem: code,
regs: [0; 3],
pc: 0,
icnt: 0,
// -- JIT state.
jit_cache,
rt: Runtime::new(),
// Confifigure the runtime to generates perf meta data.
//rt: Runtime::with_profile(),
}
}
/// Read guest register.
#[inline]
pub fn read_reg(&self, reg: TinyReg) -> u16 {
self.regs[reg.idx()]
}
/// Write guest register.
#[inline]
pub fn write_reg(&mut self, reg: TinyReg, val: u16) {
self.regs[reg.idx()] = val;
}
/// Read guest data memory.
#[inline]
pub fn read_mem(&self, paddr: PhysAddr) -> u16 {
// dmem covers whole 16 bit address space + 1 byte for unaligned access at 0xffff.
let bytes = self.dmem[paddr.into()..][..2].try_into().unwrap();
u16::from_le_bytes(bytes)
}
/// Write guest data memory.
#[inline]
pub fn write_mem(&mut self, paddr: PhysAddr, val: u16) {
let bytes = val.to_le_bytes();
self.dmem[paddr.into()..][..2].copy_from_slice(&bytes);
}
/// Dump the VM state to stdout.
pub fn dump(&self) {
println!("-- TinyVm state --");
println!(" ICNT: {}", self.icnt);
println!(" PC : {:02x}", self.pc - 1);
println!(
" A:{:04x} B:{:04x} C:{:04x}",
self.read_reg(TinyReg::A),
self.read_reg(TinyReg::B),
self.read_reg(TinyReg::C),
);
}
/// Run in interpreter mode until the next [`TinyInsn::Halt`] instruction is hit.
pub fn interp(&mut self) {
'outer: loop {
let insn = self.imem[self.pc];
//println!("[0x{:02x}] {:?}", self.pc, insn);
self.pc = self.pc.wrapping_add(1);
self.icnt += 1;
match insn {
TinyInsn::Halt => {
break 'outer;
}
TinyInsn::LoadImm(a, imm) => {
self.write_reg(a, imm);
}
TinyInsn::Load(a, addr) => {
let val = self.read_mem(PhysAddr(addr));
self.write_reg(a, val);
}
TinyInsn::Store(a, addr) => {
let val = self.read_reg(a);
self.write_mem(PhysAddr(addr), val);
}
TinyInsn::Add(a, b) => {
let res = self.read_reg(a).wrapping_add(self.read_reg(b));
self.write_reg(a, res);
}
TinyInsn::Addi(a, imm) => {
let res = self.read_reg(a).wrapping_add(imm as u16);
self.write_reg(a, res);
}
TinyInsn::Branch(disp) => {
self.pc = disp;
}
TinyInsn::BranchZero(a, disp) => {
if self.read_reg(a) == 0 {
self.pc = disp;
}
}
}
}
}
/// Run in JIT mode until the next [`TinyInsn::Halt`] instruction is hit. Translate guest
/// _basic blocks_ on demand.
pub fn jit(&mut self) {
'outer: loop {
let bb_fn = if let Some(bb_fn) = self.jit_cache[self.pc] {
bb_fn
} else {
let bb_fn = self.translate_next_bb();
self.jit_cache[self.pc] = Some(bb_fn);
//println!("[0x{:02x}] translated bb at {:p}", self.pc, bb_fn);
bb_fn
};
match bb_fn(self.regs.as_mut_ptr(), self.dmem.as_mut_ptr()) {
// HALT instruction hit.
JitRet(0, insn) => {
self.pc += insn as usize;
self.icnt += insn as usize;
break 'outer;
}
// End of basic block, re-enter.
JitRet(insn, reenter_pc) => {
self.pc = reenter_pc as usize;
self.icnt += insn as usize;
}
}
}
}
#[cfg(all(any(target_arch = "x86_64", target_os = "linux")))]
/// Translate the bb at the current pc and return a JitFn pointer to it.
fn translate_next_bb(&mut self) -> JitFn {
let mut bb = Asm::new();
let mut pc = self.pc;
'outer: loop {
let insn = self.imem[pc];
pc = pc.wrapping_add(1);
// JIT abi: JitFn -> JitRet
//
// According to SystemV abi:
// enter
// rdi => regs
// rsi => dmem
// exit
// rax => JitRet.0
// rdx => JitRet.1
// Generate memory operand into regs for guest register.
let reg_op = |r: TinyReg| {
MemOp::IndirectDisp(Reg64::rdi, (r.idx() * 2).try_into().expect("only 3 regs"))
};
// Generate memory operand into dmem for guest phys address.
let mem_op = |paddr: u16| MemOp::IndirectDisp(Reg64::rsi, paddr.into());
// Compute instructions in translated basic block.
let bb_icnt = || -> u64 { (pc - self.pc).try_into().unwrap() };
let reenter_pc = |pc: usize| -> u64 { pc.try_into().unwrap() };
match insn {
TinyInsn::Halt => {
bb.mov(Reg64::rax, Imm64::from(0));
bb.mov(Reg64::rdx, Imm64::from(bb_icnt()));
bb.ret();
break 'outer;
}
TinyInsn::LoadImm(a, imm) => {
bb.mov(reg_op(a), Imm16::from(imm));
}
TinyInsn::Load(a, addr) => {
bb.mov(Reg16::ax, mem_op(addr));
bb.mov(reg_op(a), Reg16::ax);
}
TinyInsn::Store(a, addr) => {
bb.mov(Reg16::ax, reg_op(a));
bb.mov(mem_op(addr), Reg16::ax);
}
TinyInsn::Add(a, b) => {
bb.mov(Reg16::ax, reg_op(b));
bb.add(reg_op(a), Reg16::ax);
}
TinyInsn::Addi(a, imm) => {
bb.add(reg_op(a), Imm16::from(imm));
}
TinyInsn::Branch(disp) => {
bb.mov(Reg64::rax, Imm64::from(bb_icnt()));
bb.mov(Reg64::rdx, Imm64::from(reenter_pc(disp)));
bb.ret();
break 'outer;
}
TinyInsn::BranchZero(a, disp) => {
bb.cmp(reg_op(a), Imm16::from(0u16));
bb.mov(Reg64::rax, Imm64::from(bb_icnt()));
// Default fall-through PC (branch not taken).
bb.mov(Reg64::rdx, Imm64::from(reenter_pc(pc)));
// Conditionally update PC if condition is ZERO (branch taken).
bb.mov(Reg64::r11, Imm64::from(reenter_pc(disp)));
bb.cmovz(Reg64::rdx, Reg64::r11);
bb.ret();
break 'outer;
}
}
}
unsafe { self.rt.add_code::<JitFn>(bb.into_code()) }
}
}
/// A minial fixup utility to implement jump labels when constructing guest programs.
pub struct Fixup {
pc: usize,
}
impl Fixup {
/// Create a new `Fixup` at the current pc.
pub fn new(pc: usize) -> Self {
Fixup { pc }
}
/// Bind the `Fixup` to the current location of `prog` and resolve the `Fixup`.
pub fn bind(self, prog: &mut Vec<TinyInsn>) {
let plen = prog.len();
let insn = prog.get_mut(self.pc).expect(&format!(
"Trying to apply Fixup, but Fixup is out of range pc={} prog.len={}",
self.pc, plen
));
match insn {
TinyInsn::Branch(disp) | TinyInsn::BranchZero(_, disp) => {
*disp = plen;
}
_ => {
unimplemented!("Trying to fixup non-branch instruction '{:?}'", *insn);
}
}
}
}
/// Generate a guest program to compute the fiibonacci sequence for `n`.
pub fn make_tinyvm_fib(start_n: u16) -> Vec<TinyInsn> {
// Reference implementation:
//
// int fib(int n)
// int tmp = 0;
// int prv = 1;
// int sum = 0;
// loop:
// if (n == 0) goto end;
// tmp = sum;
// sum += prv;
// prv = tmp;
// --n;
// goto loop;
// end:
// return sum;
// Variables live in memory, bin to fixed addresses.
let tmp = 0u16;
let prv = 2u16;
let sum = 4u16;
// Loop counter mapped to register.
let n = TinyReg::C;
let mut prog = Vec::with_capacity(32);
// n = start_n
prog.push(TinyInsn::LoadImm(n, start_n));
// tmp = sum = 0
prog.push(TinyInsn::LoadImm(TinyReg::A, 0));
prog.push(TinyInsn::Store(TinyReg::A, tmp));
prog.push(TinyInsn::Store(TinyReg::A, sum));
// prv = 1
prog.push(TinyInsn::LoadImm(TinyReg::A, 1));
prog.push(TinyInsn::Store(TinyReg::A, prv));
// Create loop_start label.
let loop_start = prog.len();
// Create fixup to capture PC that need to be patched later.
let end_fixup = Fixup::new(prog.len());
// if (n == 0) goto end
prog.push(TinyInsn::BranchZero(n, 0xdead));
// tmp = sum
prog.push(TinyInsn::Load(TinyReg::A, sum));
prog.push(TinyInsn::Store(TinyReg::A, tmp));
// sum += prv
prog.push(TinyInsn::Load(TinyReg::B, prv));
prog.push(TinyInsn::Add(TinyReg::A, TinyReg::B));
prog.push(TinyInsn::Store(TinyReg::A, sum));
// prv = tmp
prog.push(TinyInsn::Load(TinyReg::A, tmp));
prog.push(TinyInsn::Store(TinyReg::A, prv));
// --n
prog.push(TinyInsn::Addi(n, -1));
// goto loop_start
prog.push(TinyInsn::Branch(loop_start));
// Bind end fixup to current PC, to patch branch to jump to here.
end_fixup.bind(&mut prog);
// TinyReg::A = sum
prog.push(TinyInsn::Load(TinyReg::A, sum));
// Halt the VM.
prog.push(TinyInsn::Halt);
prog
}
/// Generate a test program for the jit.
pub fn make_tinyvm_jit_test() -> Vec<TinyInsn> {
let mut prog = Vec::with_capacity(32);
prog.push(TinyInsn::Branch(1));
prog.push(TinyInsn::LoadImm(TinyReg::A, 0x0010));
prog.push(TinyInsn::LoadImm(TinyReg::B, 0x0));
let start = prog.len();
let end = Fixup::new(prog.len());
prog.push(TinyInsn::BranchZero(TinyReg::A, 0xdead));
prog.push(TinyInsn::LoadImm(TinyReg::C, 0x1));
prog.push(TinyInsn::Add(TinyReg::B, TinyReg::C));
prog.push(TinyInsn::Addi(TinyReg::A, -1));
prog.push(TinyInsn::Branch(start));
end.bind(&mut prog);
prog.push(TinyInsn::LoadImm(TinyReg::A, 0xabcd));
prog.push(TinyInsn::Store(TinyReg::A, 0xffff));
prog.push(TinyInsn::Load(TinyReg::C, 0xffff));
prog.push(TinyInsn::Halt);
prog.push(TinyInsn::Halt);
prog.push(TinyInsn::Halt);
prog.push(TinyInsn::Halt);
prog
}
/// Generate a simple count down loop to crunch some instructions.
pub fn make_tinyvm_jit_perf() -> Vec<TinyInsn> {
let mut prog = Vec::with_capacity(32);
prog.push(TinyInsn::Halt);
prog.push(TinyInsn::LoadImm(TinyReg::A, 0xffff));
prog.push(TinyInsn::LoadImm(TinyReg::B, 1));
prog.push(TinyInsn::LoadImm(TinyReg::C, 2));
prog.push(TinyInsn::Addi(TinyReg::A, -1));
prog.push(TinyInsn::BranchZero(TinyReg::A, 0));
prog.push(TinyInsn::Branch(2));
prog
}
fn main() {
let use_jit = match std::env::args().nth(1) {
Some(a) if a == "-h" || a == "--help" => {
println!("Usage: tiny_vm [mode]");
println!("");
println!("Options:");
println!(" mode if mode is 'jit' then run in jit mode, else in interpreter mode");
std::process::exit(0);
}
Some(a) if a == "jit" => true,
_ => false,
};
let mut vm = TinyVm::new(make_tinyvm_fib(42));
if use_jit {
println!("Run in jit mode..");
vm.jit();
} else {
println!("Run in interpreter mode..");
vm.interp();
}
vm.dump();
}
#[cfg(test)]
mod test {
use super::*;
fn fib_rs(n: u64) -> u64 {
if n < 2 {
n
} else {
let mut fib_n_m1 = 0;
let mut fib_n = 1;
for _ in 1..n {
let tmp = fib_n + fib_n_m1;
fib_n_m1 = fib_n;
fib_n = tmp;
}
fib_n
}
}
#[test]
fn test_fib_interp() {
for n in 0..92 {
let mut vm = TinyVm::new(make_tinyvm_fib(n));
vm.interp();
assert_eq!((fib_rs(n as u64) & 0xffff) as u16, vm.read_reg(TinyReg::A));
}
}
#[test]
fn test_fib_jit() {
for n in 0..92 {
let mut vm = TinyVm::new(make_tinyvm_fib(n));
vm.jit();
assert_eq!((fib_rs(n as u64) & 0xffff) as u16, vm.read_reg(TinyReg::A));
}
}
#[test]
fn test_fib_icnt() {
let mut vm1 = TinyVm::new(make_tinyvm_fib(91));
vm1.interp();
let mut vm2 = TinyVm::new(make_tinyvm_fib(91));
vm2.jit();
assert_eq!(vm1.icnt, vm2.icnt);
assert_eq!(vm1.pc, vm2.pc);
}
#[test]
fn test_jit_load_imm() {
let mut prog = Vec::new();
prog.push(TinyInsn::LoadImm(TinyReg::A, 0x1111));
prog.push(TinyInsn::LoadImm(TinyReg::B, 0x2222));
prog.push(TinyInsn::LoadImm(TinyReg::C, 0x3333));
prog.push(TinyInsn::Halt);
let mut vm = TinyVm::new(prog);
vm.jit();
assert_eq!(0x1111, vm.read_reg(TinyReg::A));
assert_eq!(0x2222, vm.read_reg(TinyReg::B));
assert_eq!(0x3333, vm.read_reg(TinyReg::C));
assert_eq!(4, vm.icnt);
assert_eq!(4, vm.pc);
}
#[test]
fn test_jit_add() {
let mut prog = Vec::new();
prog.push(TinyInsn::LoadImm(TinyReg::A, 0));
prog.push(TinyInsn::Addi(TinyReg::A, 123));
prog.push(TinyInsn::LoadImm(TinyReg::B, 100));
prog.push(TinyInsn::LoadImm(TinyReg::C, 200));
prog.push(TinyInsn::Add(TinyReg::B, TinyReg::C));
prog.push(TinyInsn::Halt);
let mut vm = TinyVm::new(prog);
vm.jit();
assert_eq!(123, vm.read_reg(TinyReg::A));
assert_eq!(300, vm.read_reg(TinyReg::B));
assert_eq!(200, vm.read_reg(TinyReg::C));
assert_eq!(6, vm.icnt);
assert_eq!(6, vm.pc);
}
#[test]
fn test_jit_load_store() {
let mut prog = Vec::new();
prog.push(TinyInsn::Load(TinyReg::A, 0xffff));
prog.push(TinyInsn::LoadImm(TinyReg::B, 0xf00d));
prog.push(TinyInsn::Store(TinyReg::B, 0x8000));
prog.push(TinyInsn::Halt);
let mut vm = TinyVm::new(prog);
vm.write_mem(PhysAddr(0xffff), 0xaabb);
vm.jit();
assert_eq!(0xaabb, vm.read_reg(TinyReg::A));
assert_eq!(0xf00d, vm.read_mem(PhysAddr(0x8000)));
assert_eq!(4, vm.icnt);
assert_eq!(4, vm.pc);
}
#[test]
fn test_jit_branch() {
let mut prog = Vec::new();
prog.push(TinyInsn::Branch(2));
prog.push(TinyInsn::Halt);
prog.push(TinyInsn::Branch(6));
prog.push(TinyInsn::LoadImm(TinyReg::A, 1));
prog.push(TinyInsn::LoadImm(TinyReg::B, 2));
prog.push(TinyInsn::LoadImm(TinyReg::C, 3));
prog.push(TinyInsn::Branch(1));
let mut vm = TinyVm::new(prog);
vm.jit();
assert_eq!(0, vm.read_reg(TinyReg::A));
assert_eq!(0, vm.read_reg(TinyReg::B));
assert_eq!(0, vm.read_reg(TinyReg::C));
assert_eq!(4, vm.icnt);
assert_eq!(2, vm.pc);
}
#[test]
fn test_jit_branch_zero() {
let mut prog = Vec::new();
prog.push(TinyInsn::LoadImm(TinyReg::A, 1));
prog.push(TinyInsn::BranchZero(TinyReg::A, 5));
prog.push(TinyInsn::LoadImm(TinyReg::A, 0));
prog.push(TinyInsn::BranchZero(TinyReg::A, 5));
prog.push(TinyInsn::LoadImm(TinyReg::B, 22));
prog.push(TinyInsn::Halt);
let mut vm = TinyVm::new(prog);
vm.jit();
assert_eq!(0, vm.read_reg(TinyReg::A));
assert_eq!(0, vm.read_reg(TinyReg::B));
assert_eq!(0, vm.read_reg(TinyReg::C));
assert_eq!(5, vm.icnt);
assert_eq!(6, vm.pc);
}
#[test]
fn test_mixed() {
let mut prog = Vec::new();
prog.push(TinyInsn::LoadImm(TinyReg::A, 100));
prog.push(TinyInsn::Add(TinyReg::B, TinyReg::A));
prog.push(TinyInsn::Addi(TinyReg::C, 100));
prog.push(TinyInsn::Halt);
let mut vm = TinyVm::new(prog);
vm.interp();
assert_eq!(100, vm.read_reg(TinyReg::A));
assert_eq!(100, vm.read_reg(TinyReg::B));
assert_eq!(100, vm.read_reg(TinyReg::C));
assert_eq!(4, vm.icnt);
assert_eq!(4, vm.pc);
vm.pc = 0;
vm.jit();
assert_eq!(100, vm.read_reg(TinyReg::A));
assert_eq!(200, vm.read_reg(TinyReg::B));
assert_eq!(200, vm.read_reg(TinyReg::C));
assert_eq!(8, vm.icnt);
assert_eq!(4, vm.pc);
}
}